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Introduction

The ambiguity function or surfaces provides the designer of modern radar and sonar
technology a measure of the effectiveness of a given matched-filter signal in determining the
simultaneous evaluation of range and velocity of a moving object to the particular conditions
of target environment. In this work, we will be concerned with efficient computational

methods for evaluating this function by computers.

The ambiguity function is defined, for our purposes, as the absolute value of the function
K-1 . nk
. G(jo n) = 2 Xkyk+i €Xp (—ZVi —K——)
k=0
where J, K, N are positive integers, 0<k<K, 0<j<J, —N<n<N and Xy, Yi4j ar€ data. We

will denote v — 1 by i.

In section 2., we will view the computation of G(j,n) as a filter or convolution
(of x, exp (-Zwi%) by y;), while in section 3., G(j,n) is interpreted as a Fourier transform
(of x, y; +1): Several departures, from usual methods, making use of special circumstances,

will be described, significantly increasing the computational efficiency.

In section 3., as well, the technique of passing a long sequence through an F.I.R. filter

with decimation and computing the discrete Fourier transform (D.F.T.) of the shorter decimat-

ed sequence will be applied to the problem. We will follow the approach of [1].

In section 4., a method based on polynomial approximation theory will be introduced and
compared to the decimating filter technique. Indeed, after some initial differences, the final
stages of computing by the approximation technique coincides with those of the decimating

filter method.




............

2. Filter Method

Let A(j,n) = | G(j,n) |. The first method for computing A(j,n) is based upon writing

G(j,n) as a filter and applying fast Fourier transform (FFT) techniques to the resulting

computation. Let

z;(n) = x, exp (- Zwi%k- .

For each n, —-N<n<N, we can write

K-1
(2-1) G(j’n) = 2 zk(n) Yk+j » OSj SJ
- k=0

which expresses G(j,n) as the first J+1 outputs of a K-tap filter. (That is, we view the

sequence {y;} as the data and the sequence {z,(n)} as the tap values.)

Equivalently, if we set

z(n) = (padding)
0 , K<sk<K +]J

~

y, = Y;“,_, »0</<K +J (bit—reversal)

then for each n, ~N<ng<N, we can write G(j,n) as the cyclic convolution.

(2.2) GGm) = (20 * Yy,,; . 0sis).

Computing the cyclic convolution by standard DFT techniques yields Flow chart A for

the computing of G(j.n), 0<j<J. In general, the DFT of a sequence x will be denoted by
X.
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Denote by FFT(K) the number of complex multiplications used by the FFT methods to
compute the DFT(K). Note ; is independent of n and Y’ need be computed only once in
Flow chart A. It follows that the number of complex multiplications used by Flow chart A to

compute G(j,n), 0<j<J, ~N<ng<N, is given by
2.3) QN+ 1DK+2FFT(K+J)) +(K+1J)) + FFTKK +J).
The number given by (2.3) will be denoted by #, = « (N, K, J). Table I describes the

numerology for three choices of N, K and J. In the examples, we will take

FFT(K) = %K log, K.
Table I

K ] N | m

23 213 50 | 3145 .21

-700 | 700 | SO 1623 « 2'*~70,700 ~ 1619 . 2'*

2M4_10 70 50 1623 « 2'4~7.070 ~ 1623 . 2!

In certain cases, we can improve on the computational efficiency of the previous method.

Suppose, for instance, we have K = J. The computation of Z(n), ~N<n<N, can be made as

follows.

Pad the sequence x by setting

~ Xy , 0<k<K
Xk =

0 » KSk<2K
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and denote the DFT(2K) of x by X. Then,

~ K-t
Xoom = 3 % ew(-20 2y
k=0
K-1 uk
- z,(n) exp (~27i —
kgo (2) exp (= 2w 2K
2K-1 o ok
- 2:0 z,(n) exp (=2wi K
It follows that
L e (2.4) (Z@), = X,,5, »0Su<2K, -NgnsN.

~

Once X has been computed, without any additional complex multiplications, we can

compute Z(n), =N<ngN. Specifically, Z(n) is given by cyclically shifted, mod 2K, the

~

sequence X 2n places.

Flow chart B descibes how the observation applies to the computation of G(j,n). Also,

the number of complex multiplications used on Flow chart B is given by

(2.5) (2N + 1)(2K + FFT(2K)) + 2 FFT(2K).
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Example. For K = J = 2! and N = 50, substituting into (2.5) yields 1644.2'> which is a

50% savings as compared to #, as given in Table .

Essentially, the same argument holds if J is any integer multiple of K. The case when K

ia a multiple of J will now be considered. Suppose, for instance, K = 2J. Pad x by setting

~ Xy » 0<k<K

! and let X be the DFT(% K) of x, as above,

-

(2.6) (Z(2n)), = X ,05u<% K, —~N<2ngN.

u+3n

~
~

it follows that Z(2n) can be found by cyclically shifting, mod (% K), the sequence X 3n

places. Analogously, if we set

b ~ x, exp(—2mi X) , 0<k<K
K
z x, (1) = s
f‘ 0 ’ KSk<—
. 2
then
2.7) (Z@n+ 1), = X(1),,3,
g Thus, the number of complex mnltipﬁcatio}:s used is
5
; (2.8) (2N + 1)(1=1=1'(% K) + % K) +3 FFT(% K) + K.

Example 2. Suppose K = 2'3, J=22andN = 50. Flow chart A uses approximately

2'2 | 6000 complex multiplications. By (2.7), since K = 2J, we can compute the case in

IS M A

ar  ximately 212 4650 complex multiplications.

T
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3. Transform Method

For each j, 0<j<J, consider the sequences, defined mod K,

y(J) = Yiej
, 0<k<K,

u () = x.y.0)-
We can write
(3.1 G(j,n) = U,() , =N<ngN,

where U(j) is the DFT(K) of u(j). Flow chart C outlines the computation of G(j,n) by this

method. The number of complex multiplications used by the method is

3.2) (J 4+ )(FFT(K) + K).

We will denote the number given by (3.2) by m, = 7,(K, J). Table II reconsiders those
examples of Table I by this new method and compares these values corresponding values r,

given in Table I.
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Flow Chart C

X y
|
y()
T
u(j)
DFT(K)
|
uqj)
Table 11
K J N 7, m,
213 2 s0 2'2.15.8193 ~-Loa,
40

2'¥-700 700 50 < 5586.2" “'%11'2

2%-70 70 50 <s67.2" ~3m,

Note that in the last case the transform method is more computationally efficient than the

filter method.

In the most important applications, N<<K and we will assume this in all that follows.
As evidenced by (3.2), the method of Flow chart C does not take into account the relative

size of N as compared to K. Generally speaking, the problem is to compute the DFT(K) of

e T S Y I T ST S St s o A s SO VUSRI SURPU TN SRpy

Ao s iom s i ot




Lo ass -0 Yo DA Wi Shanit 30l i

T and . e v e

LM 7 SENEATARAEN

kAR LA Ne

ey

LM 2

P—PTYRT Y

Al Lol aediih RS SRRl Sl it datSha it B A S

-10 -

the long sequence u(j) for only a small interval of frequencies ~-N<n<N. We will follow the
approach of [1]. As we will see, the long sequence u(j) will be passed into an FIR filter with
decimation and the DFT of the shorter decimated sequence will be computed. The amount of
complex multiplications used will depend upon the number of taps of the filter and the
decimation rate. However, the DFT of the decimated sequence yields only an approximation

to G(j,n), due to aliasing errors.
Consider to begin with, a K-tap filter given by
h = (h(0), h(1),..., h(K~1))
satisfying the following properties
(I) h(k) = h(-k).
(I1) h(k) vanishes outside an interval, =M <k<M, for some integer M.
(I1II) Let H be the DFT(K) of h. Then H(0) = 1 and H(n) never vanishes, ~N<n<N.
Passing the sequences u(j) through the filter h we determine the sequence v(j) given by
K-1

V[(j) - z u[_k(j) h(k) ’ 0.<.’<Ko
k=0

or equivalently v(j) = u(j)*h. Let U(j), V(j) denote the DFT(K) of u(j), v(j), respectively.

Then,

V() = U(j) x H.

Suppose K = R x L, R, L integers and assume N<R. Consider the (L:1) decimation of
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v(j) given by
b.(j) = v, (j) 0<r<R

and denote the DFT(R) of b(j) by B(j). A standard computation, see [1], shows that

B,() = L' (V,() + E(i)  ,0<r<R,

where
L-1
E() = 3 U, k) Hr+R) , 0<r<R.

=]

Condition (III) implies we can write

U,() = Hin)~' LB ()-H(m) ' E () , ~NgngN.

We plan to approximate G(j,n) = U,_(j) by Hn)™ 'L B,(j). The error
-1 L-1 -1
H(n) E (j) = 2 U,,er()) H(n) ~ H(n + «R)
o=l
is due to the aliasing of U, xz(j) into the frequencies ~N<n<N attenuated by the factors
H(n)':l H(n + sR), =N<n<N, 0<s<L. An analysis of this aliasing error was carried out in
[1]. For our purposes, it suffices to remark that the filter h should be chosen to minimize
the factors l-i(n)-1 H(n + ¢R), for ~N<ngN, 0<s<L, in the sense of the sup norm.
Condition (I) permits the application of the Remez algorithm as contained in [1] to achieve
the minimization of these factors subject to conditions (II) and (III). At the same time, the

Remez algorithm produces the uniform bound of these factors.

For each M and L, the Remez algorithm determines a filter h satisfying (I), (II) and
(I11) and minimizing the factors H(n)-l H(n + «R) over the aliasing frequencies. For fixed L.
the error term increases as the number of taps, 2M + 1, of h decreases. Also, increasing

the decimation rate L, with fixed M, increases the error term. Thus, M large and L small
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produces small error terms. However, as we will soon see, the computation of H(n)-lL B,(j)

is most computationally efficient when M is small and L is large.

p—
kS

[ Variations of these ideas are considered in [1] where weighting factors over the decreas-
ing frequencies are introduced into the Remez subroutine as a way of accounting for the a

priori knowledge that certain aliasing frequencies require less attenuation than others.

Flow chart D describes the computation of H(n)-lL B,(j), in a straightforward manner.

A more computationally efficient method will eventually be given.

R A N T T R A A S T
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Flow Chart D For 0<j<J,

y ()

T T
L

s u(j)

:! filter

[ - T

3 v(j)

h

i - l

g decimate

I

P b(j)

g : DFT(R)

- -
F B(j)

| |

. I

-

t

- [

] Hm)~' L B (j).
l .

3

-

- The number of complex multiplications used by Flow chart D to compute
2 -

0 H(m™' L B,(), ~NgngN, 0sjg2] is given by
#' (3.3) J+1)K+2M +1 + FFT(R) +2N + 1)
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The major portion of the computation occurs in passing from x and y(j) to B(j). We will

study this process more closely. First, we can write

L

K-1
b = 3 uy_6)hk)
k=0

£ 3 2t Mt

. K-1
b = 2 XeL—k h(¢) er-k(j)
. t=0

R M
b . - 2 Xep—mh(m) y _n(i)

me-M

Set fo(r) = X q_gh( =M+ m), 0SM<2M  and g (r) = Y| _yome OSMS2M + J.

v‘lvvv‘vvrv

Then,
.
>' 2M
s (3.4) () = T () By yi(0).
3 m=(
.

The process described in Flow chart D assumes j, 0<j<]J is fixed. We will now adﬁpt the
point of view that r, 0Sr<R, is fixed and use (3.4) to compute b,( ), the sequence in j,
0<j<J, corresponding to the fixed r. Thus, (3.4), expresses b (j) as the first (J+1)-outputs
of a (2M+1)-tap filter and the methods of section 2., especially Flow chart A, can be
employed. We are also assuming M is sufficiently large to make the approach computationally

efficient.

Flow chart E, below, describes how for fixed r, 0<r<R, the method of Flow chart A
proceeds from original data to the sequence b,( ). If Flow chart E is carried out for each r,

0<r<R, then the end of Flow chart D can be applied to b(j) to compute H(n)-lL B,(j).
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DFT(2M +1 +J)

DFT-'2M+1'D)

LA
f(r)*g(r)

T
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|
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Flow chart E uses

@a3.5) RCM + 1 +3FFTCM 4+ 14+ D +2M+1 +))

complex multiplications to compute b.(j),0<j<J,0<r<R, and hence

Hm™'L B,(j), -N<ngN, 0<js], can be computed by

(35) RCM + 1 +3FFTCM + 1 +J) +2M+ 1 + ) + (J + 1)(FFT(R) + 2N + 1)
complex multiplications.
In Table III below, we will denote the number given by (3.6) by 7y = 7,(N, K, J, M, L).

Table 3 N = 50

K J M L LA 7,

213 2B %L 27 521,508 2!'%.15.8193

For a more complete analysis of the relationship between given values of K, J, M, L, N

and the corresponding values of #, see Table I, pages 216 of [1].

4. Approximation Theory

In this section, we will obtain a method analogous to that discussed in section 3, by using
ideas from approximation theory. As in section 3, the DFT(R) will be applied to the (L:1)
decimation of a sequence obtained by passing K-point data through a filter. The filter will be
determined by the degree of the approximation taken, in a sense explained below. Once the

computation to be made is written in this form, the methods of section 3 can be employed.

L
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Consider, again, the expression for G(j,n) given by (3.1); namely,

K-1
4.1) GGm) = T u(j) exp(-2eikl
kw0 K

Suppose we write K= ReL and k = /7 + rL, 0<r<R, 0</<L. Substituting 7 + rL for k in

(4.1), we get

R-1 L-1
4.2) G(jm) = 3 exp(- 28 ) Y uy . 0) exp(- 2¢i85 )
ra( fal

The plan is to approximate exp(—2wi2= K ) by an expression which when placed into (4.2)
allows us to write the right-hand side of (4.2) as the DFT(K) of some sequence in r, 0<r<R.

This DFT(R) will be taken as an approximation to G(j,n).

We will assume throughout that N<<K. Suppose we approximate
exp(—27ilt ). —NgngN, 0</<L, by 1. The resulting error is small when N and L are

small. Replacmg exp(—2miB& ) by 1 in (4.2), yields

-

R-1

4.3) Coi) = T cj) exp(-27iL )
r=(
where
L-1
(4.4) i) = T ug 0.
=0

It is easy to see that the number of complex multiplications used is

(4.5) (J + 1)(K + FFT(R)).
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Clearly, (4.4), expresses c_(j) as the (L:1) decimation of the filtered sequence
L-1

Wk(j) = 2 “k+[(j) , 0€k<K.
=0

For n, ~N<n<N, consider that part of the wunit circle given by
f(t) = exp(-Zwi%, 0<t<L. Denote by q,(t) the polynomial of degree one in t uniquely

determined by the conditions

q,(0) = £(0)

q(L) = f(L).

Thus, q,(t) is geometrically the line joining the point 1 to the point exp(—2wi %). We can

write

t t ~2rig
t l==)4+ —¢ .
q(t) = ( L) 3

Choose a real number d,(n) such that
pl(t) - d](n) ql(t)

is the best-approximation to f(t), in the sup-norm sense, over the interval 0<t<L, within the

space of all real multiples of g,(t).

Replacing exp(-Zwi-'ll(’-) by p,(¢) in (4.2) we obtain

(4.6) d,(n) C.(j)
where

= ¢ ¢
4.7) c(j) = igo (urL-H(l)(l-f) + “(,_l)[‘*((])r)
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and C(j) is the DFT(R) of c(j).

To see the analogy of this approach to the method of section 3, we proceed as follows.

Let h(k), 0<k<K, be defined by

» 0gk<L

|

h(k) =
L—-E ,L<k<2L

and zero otherwise. Consider the 2L-tap filter determined by h,

2L~1
4.8) - wi = 3 BOu_,,,0)
=0

By (4.7), we can write c(j) as the (L:1) decimating filter
4.9) c (i) = w, (i , 0<r<R.

Again, we are led to the computing of the DFT(R) of an (L:1) decimating filter. Here, the
filter is determined by the approximation taken. Since the interpolating polynomial has degree

one, we call the method, the first degree approximation method.

The techniques of section 3, can be applied to the computation of ¢.(j). Setting
X () = Xyt
x',(r) = x,(r) b(?)

Y0 = 3,0 5,0,

which for each r, 0Sr<R, expresses c () as the first (J+1)-outputs of a 2L-tap filter. The

number of complex multiplications used by this method to compute
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d,(n) C,(i). ~NsngN, 0gj<], is

(4.11) 2K + R(3FFT(2L + J) + 2L + J) + (J + 1)}(FFT(R) + 2N + 1).

Choose M>»0 and consider that part of the unit circle given by

f(t) = exp(-—2wi %), 0<t<ML. Denote by gq,(t) the uniquely determined M-th degree

polynomial in t satisfying
Q(t) = (1) ,t=0,L,..., ML
Using Lagrange interpolation we can write

M
au® = 3 h ) exp(-Zwi%'l

mw=(
where h,(t),..., hy(t) are polynomials in t. Choose a real number dy,(n) such that
PM(t) - dM(n) QM(l)

is the best-approximation to f(t), in the sup-norm sense, over the interv-1 0<t<ML, within
the set of real multiples of q).(t). We call py,(t) an M-th degree approximation since the

interpolating polynomial has degree M.

Substituting py (/) for exp(—2wi -';(—[). in (4.2), yields

(4.12) dy(n) C,(j)

where
L-1 M

(4.13) ¢ = ¥ 3 b,y
=0 m=

and C(j) is the DFT(R) of c(j).
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The analogy with section 3 can be seen by defining h(k), 0<k<K, by

‘| ' h(k) = h,_,(/~-mL) L_s/<L(m+1) ,0<m<M

and by considering the (M+1) L-tap filter

(M+1)L-1
P wi = 3 B,y )
(=0

P

Then, c(j) is the (L:1) decimation of this filter; namely,

cr(j) = er(j)'

Arguing as in the previous case, we can express the sequence (c (0)...., c,(J)) as the first

— CARLECY W G o
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(J+1)-outputs of an (M+1) « L-tap filter. The number of complex multiplications used to

compute dy(n) C, (j), —N<ng<N, 0<j<]J, by this method is

(4.15) M+ DK+RJ+ M+ 1L +3FFTJ + (M + 1)L)) + J + 1)(FFT(R) + 2N + 1).
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